Термин «биотехнология» впервые в 1917 г. применил венгерский инженер К. Эреки(1865-1933).Газета «Комсомольская правда» в 2001 г. так описывала колоссальные возможности биотехнологии:

«Японские медики приступили к беспрецедентному эксперименту по выращиванию человеческих органов из клеток зародышей — оплодотворённых яйцеклеток... Культивировать «запчасти» будут из так называемых эмбриональных стволовых клеток, из которых состоит зародыш любого живого существа на начальном этапе развития. Клетки обладают полной генетической информацией и являются предшественниками всех органов человека. Если поместить такую клетку в необходимую питательную среду, из неё можно вырастить какой угодно орган — будь то сердце, печень или нервные волокна».

Биотехнология — это интеграция естественных и технических наук с целью использования живых организмов и биологических процессов в производстве, энергетике и охране окружающей среды.

Можно выделить три этапа становления биотехнологии как отрасли производства, а затем и науки: ранняя биотехнология, новая биотехнология и новейшая биотехнология. Ранняя, или стихийная, биотехнология связана со знакомыми человеку с древнейших времён микробиологическими процессами. Издавна люди пекли хлеб, готовили сыры и кисломолочные продукты, заквашивали овощи, варили квас и пиво, делали вино. В основе технологии производства всех этих продуктов лежат процессы брожения.

Брожение — это биохимическая реакция, протекающая при участии микроорганизмов или с помощью ферментов.

Как вы знаете, в живых организмах ферменты ускоряют множество биохимических процессов. Оказывается, многие ферменты сохраняют свою биологическую активность и вне живой клетки, что стало основой их использования на заре биотехнологии. Период новой биотехнологии датируется началом XX в., когда впервые удалось вырастить вне живого организма клетки и ткани растений и животных. Начиная с середины 70-х гг. XX в. учёные нашли способы, а инженеры — технические решения по использованию биологических методов для борьбы с загрязнением окружающей среды, производства ценных биологически активных веществ (антибиотиков, ферментов, гормональных препаратов, витаминов и др.), для защиты растений от вредителей и болезней. На основе микробиологического синтеза были разработаны промышленные методы получения белков и аминокислот, используемых в качестве кормовых добавок. Современный этап развития биотехнологии можно назвать новейшей биотехнологией. Специалистам-биотехнологам стали доступны методы изменения генотипа животных и растений с целью придания им новых свойств и качеств, методы выращивания тканей и органов вне живого организма, получения точных копий родительского организма из одной-единственной его клетки. Достижения новейшей биотехнологии базируются на интеграции таких биологических дисциплин, как физиология, микробиология, биохимия, биофизика, молекулярная генетика, иммунология.

ГЕННАЯ ИНЖЕНЕРИЯ.В современной биотехнологии выделяют три раздела, три относительно самостоятельных направления; генная (или генетическая) инженерия, клеточная инженерия, биологическая инженерия.

Генная инженерия — это раздел биотехнологии, связанный с целенаправленным конструированием новых, не существующих в природе сочетаний генов, внедрённых в живые клетки и способных синтезировать определённый продукт.

Когда мы хотим отметить какую-либо характерную особенность человека, унаследованную им от родителей, например склонность к творчеству, высокий интеллект или, напротив, вредную привычку, мы сокрушённо вздыхаем: «Что поделаешь, это гены!» Что же это за таинственные гены, делающие нас похожими на своих родителей? Напомним, что в ядрах клеток живых организмов содержатся хромосомы. Основу любой хромосомы составляет макромолекула дезоксирибонуклеиновой кислоты (ДНК) очень большой длины. Как вы знаете, полимерная молекула ДНК состоит из двух параллельных нитей-макромолекул, связанных друг с другом водородными связями. Каждая «нить» представляет собой последовательно соединённые друг с другом нуклеотиды и напоминает очень длинные бусы. Например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 млн «бусинок»-нуклеотидов. Макромолекула ДНК скручена в спираль, поэтому её размер обычно не превышает 20 мкм, а в растянутом виде длина хромосомы человека может достигать 5 см. Помимо ДНК в состав хромосомы входят молекулы белков. Вы знаете, что под влиянием факторов внешней среды у всех видов

живых организмов происходят мутации. Можно ли провести мутацию искусственным путём, т. е. внедрить в

ДНК новый, несвойственный данному организму ген? Ведь таким образом можно «привить» живому организму полезное качество, которого у него не было. В 1973 г. американские учёные С. Коэн и Э. Чанг встроили в ДНК бактерии участок ДНК лягушки. Свершилось небывалое: бактерия стала вырабатывать белок, характерный для лягушки, и даже передавать лягушечью ДНК потомкам! Так была показана принципиальная возможность встраивать чужие гены в геном определённого организма. Растения и животные, в геном которых введены синтезированные гены или гены других организмов, называются генетически модифицированными организмами(ГМО), а продукты их переработки — трансгенными продуктами.

Последние десятилетия генная инженерия поистине творит чудеса. Японским учёным удалось ввести в ДНК свиней ген шпината, в результате чего мясо стало менее жирным. Генетически модифицированные растения произрастают уже на миллионах гектаров сельскохозяйственных угодий. Они отличаются от своих «собратьев» большей урожайностью, устойчивостью к вредителям, болезням и засухе, бо́льшим содержанием полезных питательных веществ. Трансгенная кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки; модифицированная соя входить в состав рафинированных масел, маргаринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, варёных колбас, кондитерских изделий, белковых биодобавок, кормов для животных и даже в состав детского питания. Создание генетически модифицированных растений, устойчивых к сорнякам и вредителям, в несколько раз уменьшает расход гербици-

дов и ослабляет тем самым химическую нагрузку на окружающую среду. В сельскохозяйственную практику входят трансгенные сорта с повышенными потребительскими свойствами, например гороха, сои, злаков с улучшенным составом белков. Созданы трансгенные помидоры без зёрнышек, на подходе бескосточковые черешня, цитрусовые. Выведен даже сорт кубических арбузов , которые экономически выгодно транспортировать и складировать за счёт более плотной укладки. Методами генной инженерии канадскими учёными получен виноград, которому пересажен ген морозоустойчивости от дикой капусты, и в Канаде появились виноградники. В животноводстве с помощью генной инженерии получены высокопродуктивные породы животных — овец, свиней, кур. В фармакологии методы генной инженерии дали возможность получить высокоэффективные вакцины против герпеса, туберкулёза, холеры; в нефтехимической промышленности — новые формы дрожжей и бактерий, способных уничтожать разливы нефти.

Клеточная инженерия — это метод конструирования клеток нового типа.

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ.В самом начале XX в. учёные-ботаники впервые высказали мысль о том, что если живую клетку извлечь из организма, то в питательной среде она сможет существовать, функционировать и даже размножаться. Спустя несколько лет эту гипотезу удалось экспериментально подтвердить на животных клетках,

а в 30-х гг. прошлого столетия — на клетках растений. Суть метода клеточной инженерии схематично можно описать так. От живого организма, например растения, берётся небольшой кусочек ткани, скажем, листовой пластинки. Мы помним, что каждая клетка хранит в себе полный набор генов (геном) этого растения, но функции

клеток дифференцированны, т. е. клетки листочка отличаются от клеток стебля, корня или цветка. Следовательно, задача клеточной инженерии на первом этапе — сделать так, чтобы клетки листа «забыли» о

своей миссии и превратились просто в набор растительных клеток. Полученная масса клеток делится, размножается, растёт их число, образуется целая клеточная колония, называемая каллусной тканью. Её можно разделить на несколько частей, а далее вновь превратить клетки каллусной ткани в клетки нужного органа растения: корня, листа или верхушечной почки. Достигается это введением в питательную среду особых химических веществ — фитогормонов. И вот уже каждый отдельный кусочек каллусной ткани приобретает вид маленького растения, способного к самостоятельному росту и развитию. Из небольшого кусочка листа мы получили десяток новых растений — точных копий родительского организма. Вершиной достижений клеточной инженерии можно считать клонирование организмов — создание точной копии живого существа. Выведенные российским генетиком и селекционером академиком В. А. Струнниковым (1914—2005) клоны шелкопряда из-

вестны на весь мир: искусственно полученные насекомые трудятся над производством шёлковой нити куда лучше своих природных собратьев. Наиболее известный феномен клеточной инженерии — клонирование домашних животных. В 1997 г. весь мир облетела весть об овечке Долли — клоне своей матери. Долли появилась на свет в июле 1996 г. благодаря клеточной инженерии. Однако клонирование животных на сегодняшний день представляет главным образом научный интерес. А вот выращивание новых тканей организма из отдельных клеток — уже реальность. Из клеток почки человека можно вырастить новый полноценный орган, который, в отличие от донорской почки, при пересадке не будет отторгаться организмом. Более того, появляется возможность производить ремонт повреждённого органа или выращивать запасной непосредственно в организме, а не в пробирке. Поистине клеточная инженерия способна творить чудеса!

Наиболее перспективным направлением сегодня является клонирование с использованием так называемых эмбриональных стволовых клеток. Вы прекрасно понимаете, что все клетки эмбриона в момент зачатия одинаковы. Главным свойством таких клеток является то, что генетическая информация, заключённая в их ядре, находится как бы в состоянии покоя, т. е. эмбриональные стволовые клетки ещё не запустили программы дифференциации в ту или иную ткань или орган. Удивительная способность этих клеток стать любыми клетками организма продиктована наличием в их ДНК всех генов, отвечающих за рост зародыша на ранней стадии развития эмбриона, т. е. генома. После получения специального сигнала эмбриональные стволовые клетки начинают своё превращение в клетки мозга, печени, сердца и т. д. Уникальность эмбриональных стволовых клеток также позволяет использовать их для выращивания огромного массива тканей и в принципе любого человеческого органа. В биотехнологическом производстве клоны клеток используют как своеобразные химические фабрики для промышленного получения биологически активных веществ. Например, гормона эритропоэтина, который стимулирует образование красных кровяных телец, а также используется для предотвращения образования тромбов в кровеносных сосудах. Методами клеточной инженерии получены факторы свёртываемости крови для лечения страшного заболевания — гемофилии, инсулин для лечения диабета.

БИОЛОГИЧЕСКАЯ ИНЖЕНЕРИЯ.Вам хорошо известно, что все встречающиеся в природе живые организмы содержат ферменты — биологические катализаторы белковой природы, ускоряющие и регулирующие протекание миллионов биохимических реакций.

Биологическая инженерия — это методы использования микроорганизмов в качестве биореакторов для получения промышленной продукции.

Задача биологической инженерии состоит в разработке технологии промышленного получения практически важных веществ или осуществления промышленных процессов при участии ферментов, как содержащихся в микроорганизмах, так и выделенных в свободном состоянии. Ферментативные процессы сегодня используются во многих отраслях промышленности:

в пищевой — для выпечки хлеба, получения кисломолочных продуктов, производства сыров, осветления соков и др.; в кожевенной и текстильной — для отделения шерсти от шкур и выделки кожи; в фармацевтической — для получения лекарственных препаратов; в сельском хозяйстве — для защиты растений от вредителей и про-

филактики заболеваний.

Микробиологические технологии используют сегодня в такой необычной для биотехнологии сфере, как металлургия. Например, известно, что более 75% запасов золота находится в природе не в виде самородков или золотого песка, а в виде вкраплений внутри кристаллических решёток сульфидных минералов — пирита (FeS2) и арсенопирита (FeAsS). Такое золото совершенно невозможно увидеть невооружённым глазом, а для его извлечения требуется химическое разрушение кристаллической решётки минерала — так называемое вскрытие породы. Как правило, вскрытие сульфидных минералов проводят обжигом руды. Но при этом в атмосферу выбрасывается огромное количество оксидов серы, потенциально опасных для окружающей среды и человека. Как альтернатива обжигу была разработана технология микробиологического вскрытия пород.Для этого руду

измельчают и помещают в раствор кислоты с добавлением особых микроорганизмов. Они окисляют ионы двухвалентного железа до трёхвалентного, а атомы серы — до анионов серной кислоты. Продукты окисления растворяются в воде, а в нерастворимом осадке остаётся чистое золото. Процесс протекает с минимальными энергозатратами при комнатной температуре и значительно более эффективен, чем химические технологии. В Канаде, ЮАР и Португалии практикуется аналогичное извлечение урана из урансодержащих руд.Стоит отметить также законченную в Институте микробиологии РАН работу над новым способом удаления метана в шахтах с использованием метанотрофных (питающихся метаном) бактерий. Нужно ли говорить об актуальности этой работы на фоне сообщений средств массовой информации о трагедиях на угольных шахтах! Наиболее перспективным направлением биологической инженерии является создание иммобилизованных ферментов.

Иммобилизованными ферментами называются искусственно получаемые препараты ферментов, молекулы которых связаны полимерным носителем, нерастворимым в воде. Такие ферменты широко применяются на

производстве. Например, получаемая из дрожжей инвертаза используется для изготовления искусственного мёда, лактаза — для производства концентрированных кисломолочных продуктов без консервантов,

а уреаза — для очистки крови в аппарате «искусственная почка». К иммобилизованным ферментам относятся бактериальные протеазы, которые применяются для производства синтетических моющих средств (энзимы, со-

держащиеся в них, позволяют удалять с тканей пятна крови, чая и т. д.), в кожевенном производстве (для удаления шерсти и дубления кож), резинотехнической промышленности (для получения губчатого латекса путём ферментативного разложения пероксида водорода). Поистине прав был М. В. Ломоносов, сказав: «Широко распростирает химия руки свои в дела человеческие!»


 

Задание: № ЗП2005

1. Заполните таблицу «Этапы становления и развития биотехнологии»