Ядерная физика как наука.

Ядерная физика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).

Атомная физика - является частью ядерной физики и изучает строение атома.


Попробуйте сформулировать почему атомная физика является частью ядерной физики.


Немного истории:

Существование у атомов ядер было установлено в 1911 г. Э. Резерфордом. 
До 1932 г., когда Дж. Чедвиком был открыт нейтрон, ядро полагали состоящим из протонов и электронов. Сразу после открытия нейтрона В. Гейзенбергом, 
Д.Д. Иваненко и Э. Майораной независимо была высказана гипотеза (подтвердившаяся в дальнейшем) о том, что ядро состоит из протонов и нейтронов. Этот момент можно считать началом ядерной физики как науки. Основную информацию об атомных ядрах дают их радиоактивность (радиоактивный распад) и ядерные реакции.
    Уже на раннем этапе развития ядерной физики было понято, что ядро существует благодаря мощным короткодействующим 
(≈10-13 см) силам притяжения нового типа (ядерным силам) между частицами, входящими в состав ядра – протонами и нейтронами. Протон и нейтрон, имеющие очень близкие массы и одинаково участвующие в ядерном взаимодействии, называют общим термином “нуклон”, а силы, действующие между нуклонами, – межнуклонными силами. Первая успешная теория ядерных сил была создана 
Х. Юкавой в 1935 г. Согласно ей ядерное взаимодействие между нуклонами осуществляется обменом массивной частицей – мезоном. Эта теория получила подтверждение в 1947 г. после открытия пи-мезона (пиона) в космических лучах.
    После открытия в 1939 г. О. Ганом и Ф. Штрассманом деления атомных ядер появилась возможность практического использования внутриядерной энергии посредством осуществления цепной ядерной реакции деления (ядерный реактор, атомная бомба). Другой метод извлечения ядерной энергии в больших количествах – термоядерные реакции – пока удалось реализовать при взрывах водородных бомб. Термоядерный реактор ещё находится в стадии разработки. 
    За менее чем вековую историю ядерной физики получена огромная информация о свойствах и структуре атомных ядер. Хорошо известны размеры ядер, распределение внутри них заряда и материи. Искусственно создано более 2500 новых ядер, отсутствующих в природе. Изучены не только ядра в основных состояниях, но и в возбуждённых состояниях. Нижние состояния (уровни) ядер хорошо локализованы по энергии, т.е. дискретны. По мере увеличения энергии ядра плотность ядерных уровней растёт и они (при энергиях возбуждения Е* > 10 МэВ) начинают перекрываться. Спектр уровней ядра от дискретного переходит к сплошному. О ядерных состояниях можно говорить вплоть до Е*100 МэВ. В этом огромном интервале энергий возможных ядерных состояний (0–100 МэВ) реализуются различные типы внутриядерных возбуждений и изучение их – одна из главных задач ядерной физики. 
    Законченной теории атомных ядер ещё не создано и это связано с тем, что ядро представляет собой систему многих сильно взаимодействующих нуклонов. Точное описание таких систем (многих тел) представляет большие теоретические сложности. Тем не менее, о теории ядра можно говорить как о вполне состоявшейся и весьма успешной науке, которая разработала ряд довольно эффективных приближённых решений задачи многих тел. 
    Теоретические подходы к описанию атомных ядер основаны на квантовой механике и использовании различных моделей. В зависимости от круга ядерных проблем применяются модели ядра, которые условно можно разбить на микроскопические (описывающие поведение отдельных нуклонов ядра) и коллективные (описывающие согласованное движение групп нуклонов в ядре).
    Новый этап в развитии ядерной физики связан с открытием кварков. Поскольку нуклоны и мезоны, участвующие в ядерном взаимодействии, состоят из кварков, то появилась возможность создать более глубокую теорию ядерных сил, в которой эти силы возникают как следствие более фундаментальных межкварковых сил.
    Ядерная физика является постоянно развивающейся наукой, отмеченной блестящими достижениями и далёкой от своего завершения. Она – один из наиболее важных разделов современной физики и тесно связана с другими её областями. Так без ядерной физики невозможно понять процессы, происходящие во Вселенной. Без ядерной физики также невозможен полноценный технический прогресс.

Радиоактивность. Виды радиоактивности.

Радиоактивность - это способность ядер атомов различных химических элементов разрушаться, видоизменяться с испусканием атомных и субатомных частиц высоких энергий. При радиоактивных превращениях, в подавляющем большинстве случаев, ядра атомов (а значит, и сами атомы) одних химических элементов превращаются в ядра атомов (в атомы) других химических элементов, либо один изотоп химического элемента превращается в другой изотоп того же элемента. Атомы, ядра которых подвержены радиоактивному распаду или другим радиоактивным превращениям, называются радиоактивными.


Материал для дополнительного изучения: https://fireman.club/presentations/ponyatie-radioaktivnosti-vidy-raspada/ 


Радиоактивные превращения могут быть естественными, самопроизвольными (спонтанными) и искусственными. Спонтанные радиоактивные превращения – процесс случайный, статистический. Все радиоактивные превращения сопровождаются, как правило, выделением из ядра атома избытка энергии в виде электромагнитного излучения.

Гамма-излучение – это поток гамма-квантов, обладающих большой энергией и проникающей способностью. Рентгеновское излучение – это так же поток фотонов – обычно с меньшей энергией. Только «место рождения» рентгеновского излучения не ядро, а электронные оболочки. Основной поток рентгеновского излучения возникает в веществе при прохождении через него «радиоактивных частиц» («радиоактивного излучения» или «ионизирующего излучения»). Основные разновидности радиоактивных превращений: радиоактивный распад; деление ядер атомов. Это испускание, выбрасывание с огромными скоростями из ядер атомов «элементарных» (атомных, субатомных) частиц, которые принято называть радиоактивным (ионизирующим) излучением. При распаде один изотоп данного химического элемента превращается в другой изотоп того же элемента. Для естественных (природных) радионуклидов основными видами радиоактивного распада являются альфа- и бета-минус-распад. Названия «альфа» и «бета» были даны Эрнестом Резерфордом в 1900 году при изучении радиоактивных излучений. Для искусственных (техногенных) радионуклидов, кроме этого, характерны также нейтронный, протонный, позитронный (бета-плюс) и более редкие виды распада и ядерных превращений (мезонный, К-захват, изомерный переход и др.).

Альфа-распад Это испускание из ядра атома альфа-частицы, которая состоит из 2 протонов и 2 нейтронов. Альфа-частица имеет массу 4 единицы, заряд +2 и является ядром атома гелия (4He). В результате испускания альфа-частицы образуется новый элемент, который в таблице Менделеева расположен на 2 клетки левее, так как количество протонов в ядре, а значит, и заряд ядра, и номер элемента стали на две единицы меньше. А масса образовавшегося изотопа оказывается на 4 единицы меньше. Альфа–распад – это характерный вид радиоактивного распада для естественных радиоактивных элементов шестого и седьмого периодов таблицы Д.И. Менделеева (уран, торий и продукты их распада до висмута включительно) и особенно для искусственных – трансурановых – элементов. То есть этому виду распада подвержены отдельные изотопы всех тяжёлых элементов, начиная с висмута. Так, например, при альфа-распаде урана всегда образуется торий, при альфа-распаде тория – радий, при распаде радия – радон, затем полоний и наконец – свинец. При этом из конкретного изотопа урана-238 образуется торий-234, затем радий-230, радон-226 и т. д. Скорость альфа-частицы при вылете из ядра от 12 до 20 тыс. км/с.

Бета-распад – наиболее распространённый вид радиоактивного распада (и вообще радиоактивных превращений), особенно среди искусственных радионуклидов. У каждого химического элемента есть, по крайней мере, один бета-активный, то есть подверженный бета-распаду изотоп. Пример естественного бета-активного радионуклида – калий-40 (Т1/2=1,3×109 лет), в природной смеси изотопов калия его содержится всего 0,0119%. Кроме К-40, значимыми естественными бета-активными радионуклидами являются также и все продукты распада урана и тория, т.е. все элементы от таллия до урана. Бета-распад включает в себя такие виды радиоактивных превращений, как: – бета-минус распад; – бета-плюс распад; – К-захват (электронный захват). Бета-минус распад – это испускание из ядра бета-минус частицы – электрона, который образовался в результате самопроизвольного превращения одного из нейтронов в протон и электрон. При этом бета-частица со скоростью до 270 тыс. км/сек (9/10 скорости света) вылетает из ядра. И так как протонов в ядре стало на один больше, то ядро данного элемента превращается в ядро соседнего элемента справа – с большим номером. При бета-минус распаде радиоактивный калий-40 превращается в стабильный кальций-40 (стоящий в соседней клетке справа). А радиоактивный кальций-47 – в стоящий справа от него скандий-47 (тоже радиоактивный), который, в свою очередь, также путём бета-минус распада превращается в стабильный титан-47. Бета-плюс распад – испускание из ядра бета-плюс частицы – позитрона (положительно заряженного «электрона»), который образовался в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. В результате этого (так как протонов стало меньше) данный элемент превращается в соседний слева в таблице Менделеева.   Например, при бета-плюс распаде радиоактивный изотоп магния магний-23 превращается в стабильный изотоп натрия (стоящего слева) – натрий-23, а радиоактивный изотоп европия – европий-150 превращается в стабильный изотоп самария – самарий-150.

Модель атома Резерфорда.

Первые сведения о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости. В тридцатых годах XIX в. опыты выдающегося физика М. Фарадея навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.

Открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью, стало прямым доказательством сложности строения атома. В 1902 году английские учёные Эрнест Резерфорд и Фредерик Содди доказали, что при радиоактивном распаде атом урана превращается в два атома – атом тория и атом гелия. Это означало, что атомы не являются неизменными, неразрушимыми частицами.

Исследуя прохождение узкого пучка альфа-частиц через тонкие слои вещества, Резерфорд обнаружил, что большинство альфа-частиц проходит сквозь металлическую фольгу, состоящую из множества тысяч слоёв атомов, не отклоняясь от первоначального направления, не испытывая рассеяния, как будто бы на их пути не было никаких препятствий. Однако некоторые частицы отклонялись на большие углы, испытав действие больших сил.

На основании результатов опытов по наблюдению рассеивания альфа-частиц в веществе Резерфорд предложил планетарную модель строения атома. Согласно этой модели строение атома подобно строению солнечной системы. В центре каждого атома имеется положительно заряженное ядро радиусом ≈ 10-10м подобно планетам обращаются отрицательно заряженные электроны. Почти вся масса сосредоточена в атомном ядре. Альфа-частицы могут без рассеяния проходить через тысячи слоёв атомов так, как большая часть пространства внутри атомов пуста, а столкновения с лёгкими электронами почти не влияют на движение тяжёлой альфа-частицы. Рассеяние альфа-частиц происходит при столкновениях с атомными ядрами.

Модель атома Резерфорда не смогла объяснить все свойства атомов.

Согласно законам классической физики атом из положительно заряженного ядра и электронов, обращающимся по круговым орбитам, должен излучать электромагнитные волны. Излучение электромагнитных волн должно приводить к уменьшению запаса потенциальной энергии в системе ядро – электрон, к постепенному уменьшению радиуса орбиты электрона и падению электрона на ядро. Однако атомы обычно не излучают электромагнитные волны, электроны не падают на атомные ядра, то есть атомы устойчивы.